
XG FRAUD BUSTER
DETECTING
FINANCIAL FRAUD
USING MACHINE LEARNING

Presented by the Fraud Busters
Joe Domaleski
Nayel Noorani
Yukti Bishambu
Liza Ghosh



Contents

2

Introduction
How Fraud Detection Works
Dataset Overview
Technologies Used
Machine Learning Pipeline for
Fraud Detection
Model Selection & Training
Results & Performance Metrics
Challenges & Lessons Learned
Future Work & Next Steps



Introduction

Fraud is a growing problem in financial transactions, costing
businesses and individuals billions annually.

Traditional fraud detection relies on rule-based systems and
manual review, which are often slow and ineffective.

Machine learning enables faster, more accurate fraud detection by
identifying hidden patterns in transaction data.

This project explores Random Forest and XGBoost to detect
fraudulent transactions.

Our goal: Improve fraud detection accuracy while reducing false
positives to minimize financial losses and protect customers.



How Fraud Detection Works
Unusual transaction amounts – Transactions significantly
higher or lower than a customer’s normal spending pattern.

Frequent small transactions – Fraudsters sometimes test
stolen cards with small purchases before making large ones.

Geographical anomalies – Transactions happening in multiple
locations within a short time span.

Unusual merchant categories – Payments to businesses the
user has never transacted with before.

Multiple declined transactions – Several failed payment
attempts can indicate card testing or fraud.



Dataset Overview

Kaggle Credit Card Fraud Dataset – 284,807
transactions, only 0.17% fraud.

Highly imbalanced – 492 fraud cases vs. 284,315
legitimate transactions.

Key features – Transaction amount, time, and 28
anonymized variables (V1–V28).

Challenges – Imbalanced data, feature
anonymization, and reducing false positives.

Solutions – Used SMOTE for balancing, feature
scaling, and an 80/20 train-test split.



Technologies Used

Programming Language: Python

Data Processing: Pandas

Machine Learning Framework: Scikit-learn

Modeling: XGBoost, Random Forest

Handling Class Imbalance: SMOTE (Imbalanced-learn)

Development Environment: Jupyter Notebook

Version Control & Documentation: GitHub

Dataset Source: Kaggle



Machine Learning Pipeline for Fraud Detection

Import
Data

Process
Data

Run
Models

Validate
Results

Compare
Results

The Random Forest / XGBoost ML Fraud Detector



Model Selection & Training
Models Chosen for Fraud Detection:

Random Forest:
• Ensemble of decision trees, reduces overfitting.
• Works well with structured data but can be slower.

XGBoost:
• Optimized gradient boosting, higher accuracy and faster training.
• Handles imbalanced datasets better than Random Forest.

Training Process:
• Data preprocessing – Feature scaling, handling missing values.
• SMOTE applied – Balances the dataset for better fraud detection.
• Train-test split (80%-20%) – Ensures proper model evaluation.



Results & Performance Metrics

Key Takeaways:
• XGBoost outperformed Random Forest in accuracy, precision, and recall.
• Higher recall means fewer fraudulent transactions were missed.
• Lower false positives reduce unnecessary fraud alerts for legitimate users.

Accuracy – Overall correctness of predictions.
Precision – Percentage of predicted fraud cases that were actually fraud.
Recall – Percentage of actual fraud cases correctly identified.
F1-Score – Balances precision and recall.
ROC-AUC Score – Measures how well the model separates fraud from non-fraud.



Challenges & Lessons Learned

Challenges Faced:
• Class imbalance – Fraud cases were only 0.17% of transactions.
• Balancing precision & recall – Avoiding too many false positives while detecting fraud.
• Computational cost – XGBoost performed better but required more processing power.
• Model explainability – Hard to interpret why the model flags transactions.

Lessons Learned:
• SMOTE helped balance data and improved fraud detection.
• XGBoost is more effective but needs tuning for real-world applications.
• Feature selection matters – Right features improve model accuracy.
• Fraud detection must evolve – Models need continuous updates to stay current..



Challenges & Lessons Learned

Challenges Faced:
• Class imbalance – Fraud cases were only 0.17% of transactions.
• Balancing precision & recall – Avoiding too many false positives while detecting fraud.
• Computational cost – XGBoost performed better but required more processing power.
• Model explainability – Hard to interpret why the model flags transactions.

Lessons Learned:
• SMOTE helped balance data and improved fraud detection.
• XGBoost is more effective but needs tuning for real-world applications.
• Feature selection matters – Right features improve model accuracy.
• Fraud detection must evolve – Models need continuous updates to stay current..



Future Work & Next Steps

• Real-time fraud detection – Deploy model for live transaction monitoring.

• Explainability & transparency – Use SHAP values to interpret fraud predictions.

• Adaptive learning – Continuously update the model with new fraud patterns.

• Scalability – Optimize for large-scale financial systems.

• API integration – Connect the model with banking and e-commerce platforms.



THANK YOU!


