

XG FRAUD BUSTER DETECTING FINANCIAL FRAUD USING MACHINE LEARNING

Presented by the Fraud Busters

- Joe Domaleski
- Nayel Noorani
- Yukti Bishambu
- Liza Ghosh

Contents

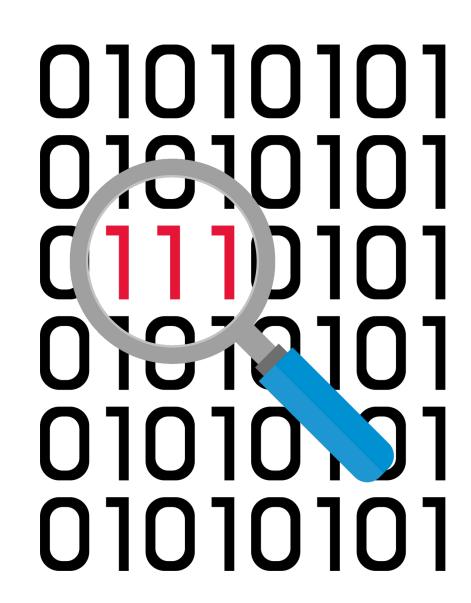
- Introduction
- How Fraud Detection Works
- Dataset Overview
- Technologies Used
- Machine Learning Pipeline for Fraud Detection
- Model Selection & Training
- Results & Performance Metrics
- Challenges & Lessons Learned
- Future Work & Next Steps

Introduction

- Fraud is a growing problem in financial transactions, costing businesses and individuals billions annually.
- Traditional fraud detection relies on rule-based systems and manual review, which are often slow and ineffective.
- Machine learning enables faster, more accurate fraud detection by identifying hidden patterns in transaction data.
- This project explores Random Forest and XGBoost to detect fraudulent transactions.
- Our goal: Improve fraud detection accuracy while reducing false positives to minimize financial losses and protect customers.

How Fraud Detection Works

- Unusual transaction amounts Transactions significantly higher or lower than a customer's normal spending pattern.
- Frequent small transactions Fraudsters sometimes test stolen cards with small purchases before making large ones.
- Geographical anomalies Transactions happening in multiple locations within a short time span.
- Unusual merchant categories Payments to businesses the user has never transacted with before.
- Multiple declined transactions Several failed payment attempts can indicate card testing or fraud.

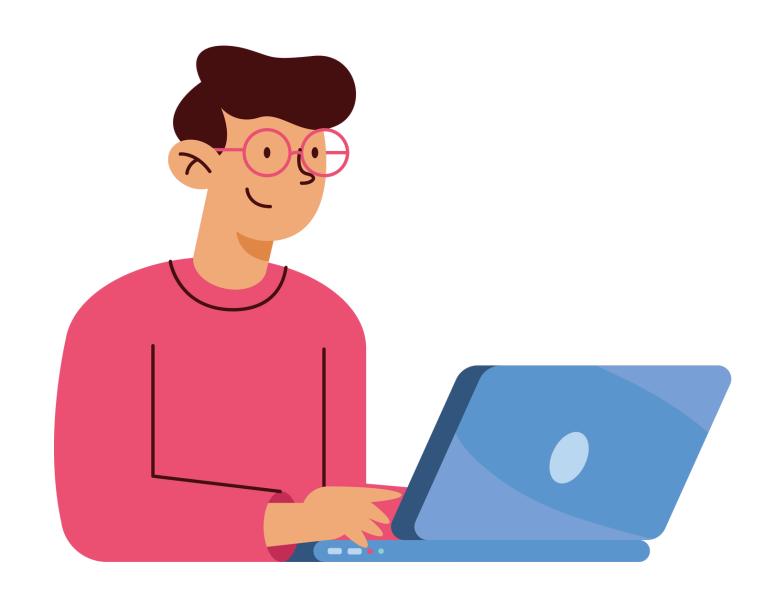


Dataset Overview

- Kaggle Credit Card Fraud Dataset 284,807 transactions, only 0.17% fraud.
- Highly imbalanced 492 fraud cases vs. 284,315 legitimate transactions.
- Key features Transaction amount, time, and 28 anonymized variables (V1–V28).
- Challenges Imbalanced data, feature anonymization, and reducing false positives.
- Solutions Used SMOTE for balancing, feature scaling, and an 80/20 train-test split.

Technologies Used

- Programming Language: Python
- Data Processing: Pandas
- Machine Learning Framework: Scikit-learn
- Modeling: XGBoost, Random Forest
- Handling Class Imbalance: SMOTE (Imbalanced-learn)
- Development Environment: Jupyter Notebook
- Version Control & Documentation: GitHub
- Dataset Source: Kaggle



Machine Learning Pipeline for Fraud Detection

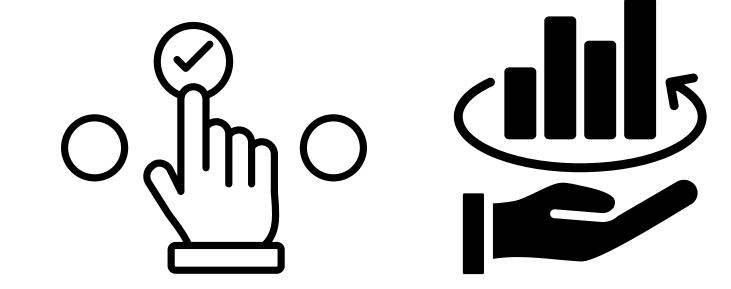
Import Data

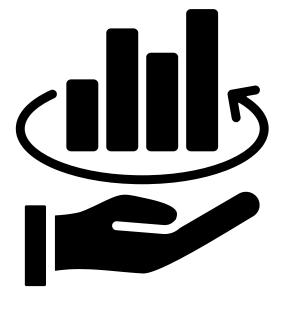
Process Data

Run Models Validate Results

Compare Results

The Random Forest / XGBoost ML Fraud Detector





Model Selection & Training

Models Chosen for Fraud Detection:

Random Forest:

- Ensemble of decision trees, reduces overfitting.
- Works well with structured data but can be slower.

XGBoost:

- Optimized gradient boosting, higher accuracy and faster training.
- Handles imbalanced datasets better than Random Forest.

Training Process:

- Data preprocessing Feature scaling, handling missing values.
- SMOTE applied Balances the dataset for better fraud detection.
- Train-test split (80%-20%) Ensures proper model evaluation.



Results & Performance Metrics

- Accuracy Overall correctness of predictions.
- Precision Percentage of predicted fraud cases that were actually fraud.
- **Recall** Percentage of actual fraud cases correctly identified.
- **F1-Score** Balances precision and recall.
- ROC-AUC Score Measures how well the model separates fraud from non-fraud.

Model	Accuracy	Precision	Recall	F1-Score	ROC-AUC
Random Forest	98.6%	87.2%	92.5%	89.8%	97.5%
XGBoost	99.1%	91.5%	95.3%	93.4%	98.8%

Key Takeaways:

- XGBoost outperformed Random Forest in accuracy, precision, and recall.
- Higher recall means fewer fraudulent transactions were missed.
- Lower false positives reduce unnecessary fraud alerts for legitimate users.

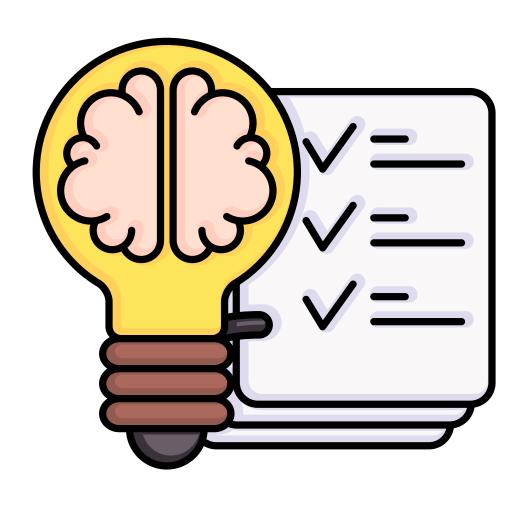
Challenges & Lessons Learned

Challenges Faced:

- Class imbalance Fraud cases were only 0.17% of transactions.
- Balancing precision & recall Avoiding too many false positives while detecting fraud.
- Computational cost XGBoost performed better but required more processing power.
- Model explainability Hard to interpret why the model flags transactions.

Lessons Learned:

- SMOTE helped balance data and improved fraud detection.
- XGBoost is more effective but needs tuning for real-world applications.
- Feature selection matters Right features improve model accuracy.
- Fraud detection must evolve Models need continuous updates to stay current..



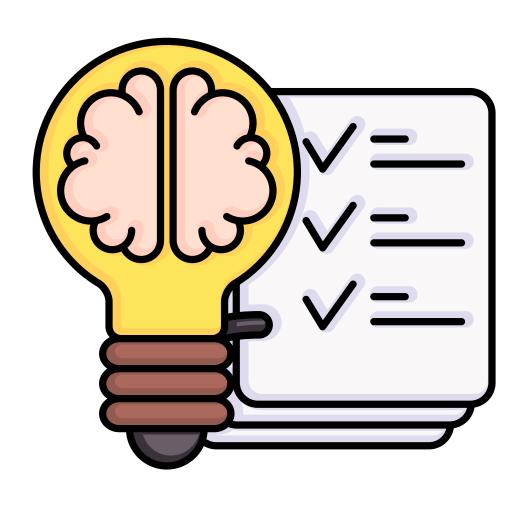
Challenges & Lessons Learned

Challenges Faced:

- Class imbalance Fraud cases were only 0.17% of transactions.
- Balancing precision & recall Avoiding too many false positives while detecting fraud.
- Computational cost XGBoost performed better but required more processing power.
- Model explainability Hard to interpret why the model flags transactions.

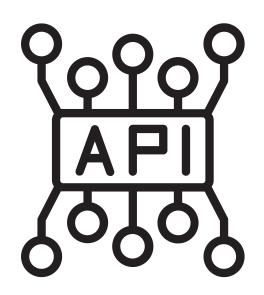
Lessons Learned:

- SMOTE helped balance data and improved fraud detection.
- XGBoost is more effective but needs tuning for real-world applications.
- Feature selection matters Right features improve model accuracy.
- Fraud detection must evolve Models need continuous updates to stay current..



Future Work & Next Steps

- Real-time fraud detection Deploy model for live transaction monitoring.
- Explainability & transparency Use SHAP values to interpret fraud predictions.
- Adaptive learning Continuously update the model with new fraud patterns.
- Scalability Optimize for large-scale financial systems.
- API integration Connect the model with banking and e-commerce platforms.



THANK YOU!

