XG FRAUD BUSTER
DETECTING
FINANCIAL FRAUD
USING MACHINE LEARNING

Presented by the Fraud Busters

e Joe Domaleski

e Nayel Noorani
e Yukti Bishambu
e Liza Ghosh

HACKLYTICS 2025 - GEORGIA TECH

Contents

.
. A L
) B, A]
oY & : -
. 3 3 -
. L) N
N - . A g
A)
v -4 '
-
| L

¢ Introduction

« How Fraud Detection Works

e Dataset Overview

» Technologies Used

« Machine Learning Pipeline for
Fraud Detection

« Model Selection & Training

» Results & Performance Metrics

e Challenges & Lessons Learned
e Future Work & Next Steps

Introduction

e Fraud is a growing problem in financial transactions, costing
businesses and individuals billions annually.

e Traditional fraud detection relies on rule-based systems and
manual review, which are often slow and ineffective.

e Machine learning enables faster, more accurate fraud detection by
identifying hidden patterns in transaction data.

e This project explores Random Forest and XGBoost to detect
fraudulent transactions.

e Our goal: Improve fraud detection accuracy while reducing false
positives to minimize financial losses and protect customers.

How Fraud Detection Works

e Unusual transaction amounts - Transactions significantly
higher or lower than a customer’s normal spending pattern.

e Frequent small transactions - Fraudsters sometimes test
stolen cards with small purchases before making large ones.

e Geographical anomalies - Transactions happening in multiple
locations within a short time span.

e Unusual merchant categories - Payments to businesses the
user has never transacted with before.

e Multiple declined transactions - Several failed payment
attempts can indicate card testing or fraud.

o000
O000

OO0OMO—000

OO0 MNOO0O

010

Dataset Overview

o Kaggle Credit Card Fraud Dataset - 284,807
transactions, only 0.17% fraud.

>
7
e Highly imbalanced - 492 fraud cases vs. 284,315 /
legitimate transactions.
I

o Key features - Transaction amount, time, and 28
anonymized variables (V1-V28).

e Challenges - Imbalanced data, feature
anonymization, and reducing false positives.

e Solutions - Used SMOTE for balancing, feature
scaling, and an 80/20 train-test split.

Technologies Used

e Programming Language: Python

e Data Processing: Pandas

e Machine Learning Framework: Scikit-learn

e Modeling: XGBoost, Random Forest

e Handling Class Imbalance: SMOTE (Imbalanced-learn)
e Development Environment: Jupyter Notebook

e Version Control & Documentation: GitHub

e Dataset Source: Kaggle

Machine Learning Pipeline for Fraud Detection

Import Process Run
Data Data Models
a a a

The Random Forest / XGBoost ML Fraud Detector

Model Selection & Training

Models Chosen for Fraud Detection:

Random Forest:
e Ensemble of decision trees, reduces overfitting.

e Works well with structured data but can be slower.

XGBoost:

e Optimized gradient boosting, higher accuracy and faster training.

e Handles imbalanced datasets better than Random Forest.

Training Process:
e Data preprocessing - Feature scaling, handling missing values.

e SMOTE applied - Balances the dataset for better fraud detection.

e Train-test split (80%-20%) — Ensures proper model evaluation.

Results & Performance Metrics

e Accuracy - Overall correctness of predictions.

e Precision - Percentage of predicted fraud cases that were actually fraud.

e Recall - Percentage of actual fraud cases correctly identified.

e F1-Score - Balances precision and recall.

e ROC-AUC Score - Measures how well the model separates fraud from non-fraud.

Model Accuracy @ Precision Recall F1-Score ROC-AUC
Random Forest @ 98.6% 87.2% 92.5% @ 89.8% 97.5%
XGBoost 99.1% 91.5% 95.3% @ 93.4% 98.8%
Key Takeaways:

e XGBoost outperformed Random Forest in accuracy, precision, and recall.
e Higher recall means fewer fraudulent transactions were missed.

e | ower false positives reduce unnecessary fraud alerts for legitimate users.

Challenges & Lessons Learned

Challenges Faced:

e Class imbalance - Fraud cases were only 0.17% of transactions.

e Balancing precision & recall - Avoiding too many false positives while detecting fraud.
e Computational cost - XGBoost performed better but required more processing power.

e Model explainability - Hard to interpret why the model flags transactions.

Lessons Learned:

e SMOTE helped balance data and improved fraud detection.

e XGBoost is more effective but needs tuning for real-world applications.
e Feature selection matters - Right features improve model accuracy.

e Fraud detection must evolve - Models need continuous updates to stay current..

Challenges & Lessons Learned

Challenges Faced:

e Class imbalance - Fraud cases were only 0.17% of transactions.

e Balancing precision & recall - Avoiding too many false positives while detecting fraud.
e Computational cost - XGBoost performed better but required more processing power.

e Model explainability - Hard to interpret why the model flags transactions.

Lessons Learned:

e SMOTE helped balance data and improved fraud detection.

e XGBoost is more effective but needs tuning for real-world applications.
e Feature selection matters - Right features improve model accuracy.

e Fraud detection must evolve - Models need continuous updates to stay current..

Future Work & Next Steps

e Real-time fraud detection - Deploy model for live transaction monitoring.
e Explainability & transparency - Use SHAP values to interpret fraud predictions.

e Adaptive learning - Continuously update the model with new fraud patterns.

e Scalability - Optimize for large-scale financial systems.

e APl integration - Connect the model with banking and e-commerce platforms.
GD
D

